PRESPAWNING MORTALITY OF MIDDLE FORK WILLAMETTE CHINOOK SALMON: IMPROVING TRAP, TRANSPORT AND RELEASE OPERATIONS

JAMES PETERSON, JUSTIN SANDERS, CAMERON SHARPE, MICHAEL KENT, CARL SCHRECK

Trap, Transport and Outplanting MF Willamette

Planning for success: Habitat capacity ~ 10K+ NOR

Problem: Prespawning Mortality (PSM)

0-20%: LOW; 20-50%: MODERATE;

>50%: HIGH

Estimated Prespawning Mortality

■ Fall Cr ■ NFMF ■ Above Hills Cr Dam

Willamette Spring Chinook Salmon Conceptual Model

Willamette Spring Chinook Salmon Conceptual Model: Trap-transport-outplant

Arrows= state transitions

Why salmon die after spawning Cushing's Syndrome

Perceptio

Stressor

Disease Immunosuppression

Cortisol

Why do salmon die early?

Sequence of Events in Adult Spring Chinook

Effects of stress + Cushing's syndrome

Determine if cortisol stress response maintained whilst Cushingoid

Remotely Anesthetize whole tank to determine resting cortisol

Stress in shallow water 1 Hr Anesthetize Sample for stress cortisol

Experimental Evidence of Stress Response

Schreck et al. in prep

Importance =

Double whammy: increased resting stress hormone increased response to stressor

More stress earlier means:

- 1. More rapid energy drain
- 2. Less ability to resist pathogens
- 3. Enhanced probability of PSM

Factors related to PSM

Transport mortality (Colvin et al.) Loading, transport time Willamette discharge (average) Degree day accumulation (average) MOR Truck (batch) _ 10.7 Trip of the day Outplant mortality (Deweber et al.) Outplant site Week of year Truck (batch) —— 106.2 Year

Unknown mechanism related to batch

Pathogen status pre-transport?

Pathogen presence + exposure + fish status

Aeromonas salmonicida
Renibacterium salmoninarum
Salmincola californiensis
Nanophyetus salmincola
Parvicapsula minibicornis
Ceratonova shasta

transmission in water Yes Yes Yes No, snails No, FW polychaetes No, FW polychaetes

Direct

Pathogen transmission during transport?

Stress + Immunosuppression + exposure

Likely culprits

Aeromonas salmonicida = furunculosis Renibacterium salmoninarum: = bacterial kidney disease (BKD) Salmonicola californiensis: parasitic copepod;

Are fish infected during transport?

Objective: Develop diagnostic tests

2017 pilot study

Fall Creek Facility

Sampled transport tanks water Pre-transport Post-transport

Detect environmental DNA (eDNA)

Wildfire complications

Quantification of pathogens: ddPCR analysis

Quantification determined based on fraction of positive droplets

Poisson statistics used to determine target DNA concentration in original sample

Advantages of ddPCR

Absolute quantification without standard curve

Not reliant on amplification efficiency

Very precise: enables reliable measurement of small changes

Greater sensitivity: inhibitor and background DNA dilution

Aeromonas salmonicida (furunculosis)

Renibacterium salmoninarum (BKD)

Salmincola californiensis 1000₃ logCopies/ml Post-transport 100-Pre-transport n.d. = not detected

Nanophyetus salmincola

C. shasta

Chinook

Next Steps

Experimental evaluation outplant strategies NF MF Willamette

<u>Fractional factorial design:</u> Sedation & handling, Density, Arrival, Drive distance

Pathogens and Disease Test transport river, pre- & post-transport Determine pathogen profiles t=0 fish

Develop optimal outplanting strategies

Summary & Discussion

Yes, we can quantify pathogens!

Proliferative pathogens increase during transport (furunculosis)

Treatments feasible

Diagnostic test development

Used to estimate number outplants needed

Acknowledgements Funding: USACE

ODFW

Hatchery

Research

Managers

USACE

Oregon State University

Oregon Cooperative Fish and Wildlife Research Unit

